Dedicated Funding Programme for Publicly-funded Schools

Project Number:	(To be assigned by the EPMS)
Name of School:	優質教育中學
	Quality Education Secondary School
Project Title:	STEM 教育之幹細胞科學:發展校本中學幹細胞課程
	STEM Education with a Focus on Stem Cell Science
Beneficiaries:	Secondary
Estimated Number of Direct	Student:600 (6)
Beneficiaries:	Teacher:4
	Parent:0
	Others (Please specify): 0 ()

1. Project Needs

1.1 Project aim(s)

In this Quality Education Fund (QEF) project, our teachers from Department of Biology and Biotechnology will develop a school-based Stem Cell Science curriculum.

The school-based Stem Cell Science curriculum in this QEF project has two domains:

(a) Stem Cell Science lessons for all junior form (S.1-3) students: The Stem Cell Science curriculum will be designed and integrated into our existing school-based Biotechnology curriculum for all S.1-3 students.

(b) Pull-out gifted programme for scientifically gifted students: Students who are gifted or have high interest in science will be selected to join a pull-out Stem Cell Science gifted programme.

The aims of our school-based Stem Cell Science curriculum are as follows:

(1) Curriculum for educating all students

To educate all junior form (S.1-3) students to be informed citizens to responsibly deal with stem cellrelated issues including scientific and ethical concerns of stem cell application and research by providing Stem Cell Science lessons in S.1-3;

(2) Curriculum for nurturing scientifically gifted students

To nurture students who have strong interest in Stem Cell Science to be aspiring scientists through research-based learning in pull-out research lessons.

1.2 School-based innovative element(s)

This QEF project aims to develop an innovative and pioneer Stem Cell Science curriculum for all junior form students and scientifically gifted learners in a secondary school. The details of the innovative elements of this project are as follows:

(1) STEM education with a focus on Stem Cell Science

The Stem Cell Science curriculum is built with Science, Technology, Engineering and Technology (STEM) elements.

(2) Curriculum of Stem Cell Science for all junior form students

Our proposed Stem Cell Science curriculum is designed for all S.1-3 students. Students will be exposed to three types of enrichment learning activities in S.1-3:

• Type-1 learning activities will target concept-building tasks.

• Type-2 learning activities will involve practical skills of the concepts established in the type-1 learning tasks.

• Type-3 learning activities will help students apply their skills and concepts learnt in type-1 and type-2 lesson activities to solve real problems.

(3) Curriculum of stem cell research programme for scientifically gifted students We propose to develop the pull-out gifted programme so as to nurture students who are interested in Stem Cell Science.

1.3 Meeting with school-based/students' needs

Item: Relevance to the school development plan of this cycle/major concern

(1) Our school's mission is to provide ample opportunities for students to develop their potentials and multiple intelligence by facilitating innovative curricula in response to the needs of students and social changes. Our school will establish a new curriculum which helps equip students with necessary knowledge about Stem Cell Science for future personal needs and social changes and develop students' potentials in science especially in the areas of Stem Cell Science.

(2) Our recent school development plans aim to create diverse learning opportunities for students of different interests and career's expectations. In this QEF project, the school-based Stem Cell Science curriculum will create a new learning platform for students to explore stem cell-related studies and careers in universities and in commercial areas.

Our current school-based Science curriculum which is composed of gifted education programme, Biotechnology curriculum, reformed Integrated Science curriculum and Research-based learning programme has been recognised as an innovative curriculum to provide students with extensive science research opportunities. To further develop our Science curriculum, our school will set up a novel Stem Cell Science curriculum which will be integrated into our existing Biotechnology curriculum and Integrated Science curriculum for S.1-3 students. A new branch of pull-out gifted programme will also be developed to nurture aspiring student scientists who are interested in Stem Cell Science.

2. Project Feasibility

2.1 Key concept (s)/rationale(s) of the project

Item: Reference pedagogical theories/strategies

With the experience of our Biology teachers to develop school-based curriculum in science, our school is confident to develop a school-based Stem Cell Science curriculum for all junior form students (S.1-3). We believe that this curriculum can equip students with stem cell-related knowledge and positive attitude to

deal with different personal, social and worldwide contexts in the near future.

The Stem Cell Science curriculum will be integrated into our existing Biotechnology and Integrated Science lessons for all S.1-3 students.

Our school will also develop a pull-out gifted education programme about stem cell research for high achievers in science.

2.2 School's readiness

Item: Relevant training received/qualifications and experience acquired by teaching staff Our teachers in Department of Biology and Biotechnology will be responsible for this QEF project. 4 teachers have strong background in biological sciences and science education.

2.3 Principal and teachers' involvement

School Staff: Principal

Duties: Formulate plans, Monitor and supervise, Coordinate / collaborate, Process funding

School Staff: Project leader

Duties: Formulate plans, Coordinate / collaborate, Process funding, Conduct / participate in activities

School Staff: Subject panel head

Duties: Plan curriculum / activities, Conduct / participate in activities, Consolidate learning and teaching materials, Formulate plans

School Staff: Subject teachers

Duties: Plan curriculum / activities, Conduct / participate in activities, Consolidate learning and teaching materials

School Staff: Subject teachers

Duties: Plan curriculum / activities, Conduct / participate in activities, Consolidate learning and teaching materials

School Staff: Laboratory Safety Committee

Duties: Monitor and supervise

2.4 Project period

Project Start Date and End Date: from 09/2021 to 08/2023

The project lasts for 2 year(s) and 0 month(s).

2.5 Details of project activities

a. Project implementation measures

Activity 1: S.1 Integrated Science

Implementation Period:

09/2022 - 06/2023

Key learning stages and key learning areas/subjects/learning elements	<u>Content</u>	Number of sessions
S.1 Integrated Science	 nature of stem cells different types of stem cells: embryonic stem cells and adult stem cells potential application of stem cells in medicine public concerns on application of stem cells in medicine ethical and legal issues related to the application of human stem cells in medicine 	 6 lessons; 1-hr duration for each lesson

Number of school personnel and/or appointed project staff involved and respective duties:

• Our school Biology teachers who are responsible for the development of Stem Cell Science curriculum

Expected outcomes:

• S.1 students will understand what stem cells are and why stem cells can be used in medicine.

Activity 2: S.2 Integrated Science

Implementation Period:

09/2022 - 06/2023

Key learning stages and key learning areas/subjects/learning elements	<u>Content</u>	Number of sessions
S.2 Integrated Science	 cell culture system for (rat/mouse) stem cell culture ability of stem cells to develop into different types of cells 	 6 lessons; 1-hr duration for each lesson

٠	ethical and legal issues related to	
	stem cell research, especially on	
	human stem cell research	
•	concerns related to human stem	
	cell research from scientists,	
	government, legislative	
	departments, commercial	
	organizations, doctors and	
	patients	

Number of school personnel and/or appointed project staff involved and respective duties:

• Our school Biology teachers who are responsible for the development of Stem Cell Science curriculum

Expected outcomes:

• S.2 students will know what and how stem cell research can be carried out.

Activity 3: S.3 Integrated Science

<u>Implementation Period:</u> 09/2022 - 06/2023

Key learning stages and key learning areas/subjects/learning elements	<u>Content</u>	Number of sessions
S.3 Integrated Science	 examples of some genes related to stem cell development recent discovery of induced pluripotent stem cells (iPSC) to illustrate a new direction of application of stem cells in medicine 	 6 lessons; 1-hr duration for each lesson

Number of school personnel and/or appointed project staff involved and respective duties:

• Our school Biology teachers who are responsible for the development of Stem Cell Science curriculum

Expected outcomes:

• S.3 students will understand how genes regulate the differentiation and functions of stem cells.

Activity 4: S.3-6 Integrated Science (Biology)						
Implementation Period:						
09/2022 - 06/2023						
Key learning stages and key learning	<u>Content</u>	Number of				
areas/subjects/learning elements		<u>sessions</u>				

• S.3-6 Integrated Science / Biology)	Pull-out gifted education	• 24 lessons; 1-hr
	programme on stem cell	duration for
	research: S.3 - 6 students who are	each lesson
	interested in stem cell research	
	will study the effects of	
	Traditional Chinese Medicine on	
	rat or mouse stem cells' functions	
	and differentiation. Another	
	programme is about tissue	
	engineering by rat or mouse stem	
	cells.	

Number of school personnel and/or appointed project staff involved and respective duties:

• Our school Biology teachers who are responsible for the development of Stem Cell Science curriculum

Expected outcomes:

• Students will have first-hand experience to do scientific research on stem cells. These students will acquire research experience to be an aspiring scientist.

b. Teacher training (if applicable)

c. Other measures and activities (if applicable)

2.6 Budget

a. Staff cost

Post title	Full-time	Appointment	Monthly	Mandatory	Employment	Amount(\$)	Justification
	equivalent	requirements	salary	Provident	period		
				Fund	(months)		
Teaching	100.0	The qualification	12,000	600	24	302,400	There will be a lot
Assistant		of the Teaching					of administrative
		Assistant should					work in this QEF
		be a bachelor					project. It is
		degree holder.					necessary to have
		The Teaching					a Teaching
		Assistant with					Assistant to help
		experience in					deal with such
		dealing with					administrative
		teaching materials					work. The
		is preferred.					concrete duties
							of the Teaching
							Assistant are to
							help organize
							teaching
							materials
							designed by our
							teachers and
							handle
							documentation
							and other
							administrative
							work.
				Sub-total or	n staff cost :		302,400

b. Service cost

Item	Service details	Unit cost	Quantity	Unit	Amount(\$)	Justification	
Sub-total on service co			e cost :			0	

c. Equipment cost

Item	Specifications	Unit cost	Quantity	Unit	Amount(\$)	Justification
Class II	Three cabinets can entertain	35,000	3		105,000	Class II Biosafety
Biosafety	six students to do experiments					Cabinets will
Cabinet	at the same time.					provide a safe and
						sterile platform for
						students, teachers
						and laboratory
						technicians to deal
						with stem cells and
						their experiments.
						The model of Class
						II Biosafety Cabinet
						which can allow
						two people to

				work at the same
				time will be
				purchased.
CO2 Incubator	 40 000	1	40 000	CO2 incubator is
	40,000	-	40,000	used for keeping
				stom colls at a
				scent cells at a
				conditions. It is
				necessary for all
				cell culture
				laboratories.
Live-Cell	100,000	1	100,000	Live-cell imaging
Imaging				system provides
System				real-time photos
				and videos about
				the development
				of stem cells at
				different stages.
				Changing of
				experimental
				conditions may
				course
				morphological
				changes of stem
				cells. Real- time
				observation helps
				students construct
				knowledge of
				complicated
				developmental
				stages of stem
				cells. Some
				experiments of
				stem cells may
				involve overnight
				incubation and
				live-cell imaging
				system provides
				feasibility to
				students that they
				can continue
				obsorving the
				dovelopment of
				development of
				stem cells after
				school.
micropipettes	3,000	4	12,000	In cell culture
				experiments,
				accurate transfer
				of different
				volumes is needed.
				Four sets of

			micropipettes allow eight groups of students to conduct
			experiments at the same time.
	Sub-total on equipme	ent cost :	257,000

d. Works cost

ltem	Works details	Amount(\$)	Justification	
	Sub-total on works cost :			0

e. General expenses

Item	Amount(\$)	Justification
Culture medium and associated items for keeping stem cells for 2 years (\$500 x 12	6,000	It is necessary to
months)		provide cultured
		cells with
		appropriate
		nutrients. Tailor-
		made culture
		medium for specific
		stem cells has to be
		purchased from
		biotechnology
		companies.
Sub-total on general expenses :	6,000	

f. Contingency

Item		Amount(\$)
		(Round down to the nearest
		integer)
Works contingency		0
General contingency		7,890
	Sub-total on contingency :	7,890

g. Audit fee

	Amount(\$)
Audit fee	5,000
Sub-total on au	dit fee : 5,000
Total amount of funding	sought : 578,290

3. Expected Project Outcomes

3.1 Deliverables/positive impact on the school's development

Item: Resource package

S.1 PowerPoint slides for stem cell science lessons and one set of student handouts will be produced. The topics covered include the nature of stem cells and potential application of stem cells in medicine.

S.2 PowerPoint slides for stem cell science lessons and one set of student handouts will be produced. The topics covered include cell culture system for stem cell culture. A set of safety procedures to carry out stem cell culture will be produced.

S.3 PowerPoint slides for stem cell science lessons and one set of student handouts will be produced. The topics covered include the development of stem cells into different types of cells and ethical and legal issues related to stem cell application and research.

Item: Strengthened teachers' capabilities in curriculum design and teaching

(1) Enrichment of existing Integrated Science curriculum and Senior Secondary Biology curriculum(2) Promotion of STEM education

Our school-based Stem Cell Science curriculum contains STEM elements which can promote students' STEM literacy. The Stem Cell Science lessons provide a learning platform for students to develop STEM literacy.

(3) Enhancement of students' quality in terms of scientific and ethical concerns

One of our missions in science education is to educate and nurture informed citizens who are able to make responses wisely and responsibly towards various personal and social issues. We believe that our Stem Cell Science curriculum will provide students with necessary knowledge, skills and responsible attitude towards future stem cell-related issues.

3.2 Evaluation

Evaluation Method: Lesson/activity observation

Success criteria:

- Our school has set up quality assurance mechanism to assure the quality of each lesson. Peer lesson observation is one of the methods applied in the quality assurance mechanism. In peer lesson observation, our Biology teachers will study the learning difficulties of students in each of the topics in the Stem Cell Science lessons.
- Success criteria: Students in Stem Cell Science lesson are engaged in active learning on stem cell topics.

Evaluation Method: Lesson/activity observation

Success criteria:

- In quality assurance mechanism in our school, lesson study is also applied for the development of teaching strategies for promoting learning and teaching effectiveness.
- Success criteria: Specific teaching strategies are established for teaching stem cell science and ethical and social issues about stem cell applications.

Evaluation Method: Questionnaire

Success criteria:

• Questionnaire on students' understanding on stem cells and stem cell-related issues. This survey aims to study the effectiveness of our school-based Stem Cell Science curriculum to educate students to be more informed in the area of Stem Cell Science and stem cells' ethics and applications.

Evaluation Method: Focus group interview

Success criteria:

- Some students will be selected to be interviewed. The objective of the interview is to study students' view on this new school-based curriculum.
- Success criteria: Interview of students is done and some comments are collected for further development of the Stem Cell Science curriculum.

3.3 Sustainability of the project (only applicable to applications with total funding sought exceeding \$200,000)

• The project will be extended to other classes/levels/subjects.

3.4 Dissemination (only applicable to applications with total funding sought exceeding \$200,000)

Item: Seminar/sharing session

A seminar will be organised to disseminate our Stem Cell Science curriculum.

Item: Workshop

Two workshops about the practical tasks in our Stem Cell Science curriculum will be organized for secondary school teachers.

Item: Learning circle

Some teaching materials will be uploaded to our school webpage so that other teachers can download the materials as a reference for the development of their school-based Stem Cell Science curriculum.

When writing this proposal, did the school refer to the sample proposal/project(s) approved with funding support at the Quality Education Fund (QEF) website?

No